GENERALIZED COUETTE FLOW WITH VARIABLE VISCOSITY
AND DISSIPATION OF MECHAN'ICAL ENERGY

S, I. Prokopets UDC 532.517.2

We employ the method of a small parameter to solve the problem of a pressure-stabilized
Couette flow in which we take into account dissipation of mechanical energy and an exponen-
tial temperature dependence of viscosity.

We consider a stationary laminar flow of a viscous liquid in a layer between two parallel plates, y=h
and y =-h, the lower plate moving in its plane with congtant speed V. We assume, in addition, that in
the gap between the plates a pressure gradient of constant magnitude dp/dx = A is acting. The viscosity of
the liquid is assumed to vary exponentially with the temperature and the plates are kept at the constant
temperatures Ty and T;, Then the velocity distribution and the temperature in the flow, in dimensionliess
variables, will be a solution of the following boundary-value problem:
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We remark that in the case of hyperbolic dependence of the viscosity on the temperature the system
(1)-(2) is linear and its solution is given in [1]. In our case the system (1)-(3) is nonlinear and no exact
solution for it is available. Hence, putting » < 1, we seek a solution of the boundary-value problem (1)-(4)
by the method of a small parameter, i.e.,

UZUO+%01+%202+ . (5)
0=0, 4 %0, -+ %%0, -+ ... (6)

Expanding u in a series in powers of » and substituting Eqs. (5) and (6) into Egs. (1) and (2), we obtain the
problem for gradientless Couette flow

d dv, _

dE [ & o G°)J > w
a0 du, \?

0 0 0 )=
- +a( . ) exp (— 0,)=0 (8)

with the boundary conditions (4).

This problem was first solved in [2] for the special case T = Ty later, in [3, 4], a solution was
given for arbitrary plate temperatures, the solution being of the form
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Consequently, for the first approximation, we have the system
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Using the solutions (9) and (10), we obtain a nonhomogeneous differential equation with variable coefficients
for the temperature 6;:
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where C; is a constant of integration from Eq, (11).

It is readily established that one of the particular solutions of the homogeneous equation corresponding
to Eq. (13) is
aC, )
5 .

We can now readily construct the general solution of Eq, (13):
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in accordance with which we can write Eq. (11) as
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Integrating Eq. (15) and taking Eq. (14) into account, we obtain
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The integration constants Cj, Cg4, Cq, and Cg may be obtained by satisfying the zero boundary conditions
providing that the system determinant
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From the hydrodynamic point of view we can look upon inequality (17) as the condition for the existence of
pressure-stabilized laminar Couette ﬂow with heat transfer and mechanical energy dissipation in the first
approximation,

We note, in conclusion, that the problem of the existence of critical pressure regimes of Couette
flow when the viscosity has a hyperbolic temperature dependence was considered in [5] and [6], however,
in another setting.

NOTATION
Vg is the velocity;
T, Ty, T, are the temperature of liquid of lower and upper plates;
v is the velocity of lower plate;
2h is the distance between plates;
U is the dynamic viscosity of liquid;
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A is the liquid thermal conductivity;

J is the mechanical equivalent of heat;
y is the coordinate;

v

= Vy/V is the dimensionless velocity;
=8T is the dimensionless temperature;
% =4Ah%/u,V, o =pyV*S/Ir  are the parameters;
o is the viscosity at T = T = 0;
t=h-y/2h is the dimensionless transverse coordinate,
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